Autor: |
Dingzhou Wu, Xiuhua Chen, Hongyan Qiu |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Aerospace, Vol 11, Iss 8, p 641 (2024) |
Druh dokumentu: |
article |
ISSN: |
2226-4310 |
DOI: |
10.3390/aerospace11080641 |
Popis: |
The thrust reverser system stands as the critical component in contemporary large civil aviation, significantly impacting operational efficiency. Owing to their significant weight-reduction benefits, composite materials have emerged as a prominent trend in structural design in recent years. The aim of this research is to optimize the design of the thrust reverser cascade by replacing metal materials with composite materials and to propose a method for conducting mechanical tests on the cascade without a wind tunnel using a new loading scheme and a device that is simpler, more convenient, and less expensive. Focusing on a composite thrust reverser cascade with an inclined blade and beam, the structural and operational load characteristics of the cascade were analyzed and a finite element model incorporating progressive damage analysis was established. The progressive damage analyses of both the global and sub-model elucidated that initial structural degradation manifests near the mounting holes, with the matrix compression failure mode. In addition, a static test method was devised employing levers and hooks. Comparative analyses between test and numerical results demonstrate congruence. The research in this paper provides guidance for the design and testing of the composite thrust reverser cascade. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|