Autor: |
Mlamuli Dhlamini, Kukhanya Zondo, Pride Duve, Hiranmoy Mondal, Shweta Mishra, Precious Sibanda, Sachin Shaw, Sandile Motsa |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Results in Engineering, Vol 23, Iss , Pp 102645- (2024) |
Druh dokumentu: |
article |
ISSN: |
2590-1230 |
DOI: |
10.1016/j.rineng.2024.102645 |
Popis: |
Micropolar fluids are fluids that contain rigid and randomly oriented particles immersed in a viscous fluid, such as lubricants that contain dirt and metal scraps from shearing. These particles undergo translational and rotational motion simultaneously in the fluid. When heat is transferred between non-metallic mediums, an impedance to phonons is experienced. This gives rise to the temperature jump phenomenon. The continuous disruption of thermal, fluid, and concentration equilibrium conditions is a common feature in most industrial processes. This gives rise to the concept of relaxation. This paper investigates the combined effects of temperature jumps and relaxation effects. A system of partial differential equations is formulated to capture the dynamics. The system of partial differential equations is converted into a boundary value problem and solved numerically using the spectral quasilinearization method. Our key results show that increasing the micro-inertia density accelerates the fluid motion and increases the micro-rotation and concentration while reducing the fluid temperature in the boundary layer. The micro-rotation parameter is shown to reduce the wall couple stress. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|