Autor: |
Yongzhi Xiao, Diafara Boureima Oumarou, Shuang Wang, Yingzhe Liu |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Frontiers in Pharmacology, Vol 11 (2020) |
Druh dokumentu: |
article |
ISSN: |
1663-9812 |
DOI: |
10.3389/fphar.2020.520486 |
Popis: |
Ischemic heart disease has become a major health challenge worldwide. Malva sylvestris L. (MS) is a traditional herbal medicine with anti-inflammatory properties and have been used as antioxidant and anti- inflammatory agent in infectious diseases and inflammatory diseases.In this study, we aimed at elucidating the mechanism of MS against ischemia-reperfusion (I/R)–induced injury in vivo and in vitro. The I/R animal model in rats and oxygen glucose deprivation/re-oxygenation (OGD/Re) model in H9c2 cells were used in this study. MS was used to pre-treat the rats and cells. Electrocardiogram, histology staining, qPCR, ELISA, CCK-8, and circRNA microarray were performed. We found that pre-treatment with MS extract attenuate OGD/Re-induced cell apoptosis and cell viability inhibition in H9c2 cells. In addition, pre-treatment with MS protected against I/R injury in vivo. The protective effects of MS pre-treatment were associated with inflammatory genes expression and cytokines release. Further mechanistic investigation revealed that MS protected cardiomyocytes through regulating circular RNA (circRNA). We identified a novel circRNA circ003593 that mediated the protective role of MS in vitro through NLRP3 complex, which was associated with reperfusion injury salvage kinase (RISK) signaling pathway. Conclusion: this study is the first time to demonstrate the protective role of MS on I/R injury. Our findings reveal a novel circRNA circ003593-mediated the protective role of MS through NLRP3 inflammasome. Circ003593 may serve as a potential therapeutic target for ischemic heart diseases. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|