Autor: |
Ji-young OCK, Miki FUJISHIRO, Kazuhide UENO, Masayoshi WATANABE, Kaoru DOKKO |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Electrochemistry, Vol 89, Iss 6, Pp 567-572 (2021) |
Druh dokumentu: |
article |
ISSN: |
2186-2451 |
DOI: |
10.5796/electrochemistry.21-00086 |
Popis: |
Combining highly concentrated electrolytes with a polymer network is a valid approach to simultaneously achieve fast Li+ ion transport, high thermal stability, and a wide electrochemical window in a quasi-solid-state form. In this work, flexible gel electrolytes comprising commercially available poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF–HFP) and highly concentrated electrolytes of Li salts/sulfolane (SL) were prepared by a simple solution casting method. The anionic effects of the gel electrolytes on the Li-ion conductivity and charge transfer kinetics at the gel/electrode interface were investigated. The SL-based gel electrolyte with lithium bis(fluorosulfonyl)amide (LiFSA) showed an ionic conductivity of 0.7 mS cm−1 and a high Li transference number (>0.5) at 30 °C. The charge transfer resistance in a [Li/gel/LiCoO2] cell with LiFSA was lower than that of the cells with lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) or LiBF4, indicating faster interfacial charge transfer kinetics in the gel electrolyte with FSA. The Li/LiCoO2 cell with the LiFSA/SL gel electrolyte exhibited a higher capacity than that of the cells with the LiTFSA/SL and LiBF4/SL gel electrolytes. Hence, rationally designed gel electrolytes containing highly concentrated SL-based electrolytes enable the high rate performance of Li batteries. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|