Autor: |
Shuai Yao, Juntao Sun, Tsung-Fang Wu |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Electronic Journal of Differential Equations, Vol 2020, Iss 06,, Pp 1-18 (2020) |
Druh dokumentu: |
article |
ISSN: |
1072-6691 |
Popis: |
We consider the stationary quantum Zakharov system with a higher competing perturbation $$\displaylines{ \Delta ^2u-\Delta u+\lambda V(x)u=K(x)u\phi -\mu | u|^{p-2}u \quad \text{in }\mathbb{R}^3, \cr -\Delta \phi +\phi =K(x)u^2 \quad \text{in }\mathbb{R}^3, }$$ where $\lambda >0$, $\mu>0$, $p>4$ and functions $V$ and $K$ are both nonnegative. Such problem can not be studied via the common arguments in variational methods, since Palais-Smale sequences may not be bounded. Using a constraint approach proposed by us recently, we prove the existence, multiplicity and concentration of nontrivial solutions for the above problem. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|