Autor: |
Yujiang Wang, Karoline Leiberg, Nathan Kindred, Christopher R Madan, Colline Poirier, Christopher I Petkov, Peter Neal Taylor, Bruno Mota |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
eLife, Vol 12 (2024) |
Druh dokumentu: |
article |
ISSN: |
2050-084X |
DOI: |
10.7554/eLife.92080 |
Popis: |
The cerebral cortex displays a bewildering diversity of shapes and sizes across and within species. Despite this diversity, we present a universal multi-scale description of primate cortices. We show that all cortical shapes can be described as a set of nested folds of different sizes. As neighbouring folds are gradually merged, the cortices of 11 primate species follow a common scale-free morphometric trajectory, that also overlaps with over 70 other mammalian species. Our results indicate that all cerebral cortices are approximations of the same archetypal fractal shape with a fractal dimension of df = 2.5. Importantly, this new understanding enables a more precise quantification of brain morphology as a function of scale. To demonstrate the importance of this new understanding, we show a scale-dependent effect of ageing on brain morphology. We observe a more than fourfold increase in effect size (from two standard deviations to eight standard deviations) at a spatial scale of approximately 2 mm compared to standard morphological analyses. Our new understanding may, therefore, generate superior biomarkers for a range of conditions in the future. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|