Autor: |
David Hansen, Tasho Kaletha, Jared Weinstein |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Forum of Mathematics, Pi, Vol 10 (2022) |
Druh dokumentu: |
article |
ISSN: |
2050-5086 |
DOI: |
10.1017/fmp.2022.7 |
Popis: |
Kottwitz’s conjecture describes the contribution of a supercuspidal representation to the cohomology of a local Shimura variety in terms of the local Langlands correspondence. A natural extension of this conjecture concerns Scholze’s more general spaces of local shtukas. Using a new Lefschetz–Verdier trace formula for v-stacks, we prove the extended conjecture, disregarding the action of the Weil group, and modulo a virtual representation whose character vanishes on the locus of elliptic elements. As an application, we show that, for an irreducible smooth representation of an inner form of $\operatorname {\mathrm {GL}}_n$ , the L-parameter constructed by Fargues–Scholze agrees with the usual semisimplified parameter arising from local Langlands. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|