Autor: |
Mitesh S. Patel, Kevin G. Volpp, Dylan S. Small, Genevieve P. Kanter, Sae-Hwan Park, Chalanda N. Evans, Daniel Polsky |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 13, Iss 1, Pp 1-9 (2023) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-023-35201-9 |
Popis: |
Abstract Hospital readmission prediction models often perform poorly, but most only use information collected until the time of hospital discharge. In this clinical trial, we randomly assigned 500 patients discharged from hospital to home to use either a smartphone or wearable device to collect and transmit remote patient monitoring (RPM) data on activity patterns after hospital discharge. Analyses were conducted at the patient-day level using discrete-time survival analysis. Each arm was split into training and testing folds. The training set used fivefold cross-validation and then final model results are from predictions on the test set. A standard model comprised data collected up to the time of discharge including demographics, comorbidities, hospital length of stay, and vitals prior to discharge. An enhanced model consisted of the standard model plus RPM data. Traditional parametric regression models (logit and lasso) were compared to nonparametric machine learning approaches (random forest, gradient boosting, and ensemble). The main outcome was hospital readmission or death within 30 days of discharge. Prediction of 30-day hospital readmission significantly improved when including remotely-monitored patient data on activity patterns after hospital discharge and using nonparametric machine learning approaches. Wearables slightly outperformed smartphones but both had good prediction of 30-day hospital-readmission. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|