The eleventh cohomology group of $\overline {\mathcal {M}}_{g,n}$

Autor: Samir Canning, Hannah Larson, Sam Payne
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Forum of Mathematics, Sigma, Vol 11 (2023)
Druh dokumentu: article
ISSN: 2050-5094
DOI: 10.1017/fms.2023.59
Popis: We prove that the rational cohomology group $H^{11}(\overline {\mathcal {M}}_{g,n})$ vanishes unless $g = 1$ and $n \geq 11$ . We show furthermore that $H^k(\overline {\mathcal {M}}_{g,n})$ is pure Hodge–Tate for all even $k \leq 12$ and deduce that $\# \overline {\mathcal {M}}_{g,n}(\mathbb {F}_q)$ is surprisingly well approximated by a polynomial in q. In addition, we use $H^{11}(\overline {\mathcal {M}}_{1,11})$ and its image under Gysin push-forward for tautological maps to produce many new examples of moduli spaces of stable curves with nonvanishing odd cohomology and nontautological algebraic cycle classes in Chow cohomology.
Databáze: Directory of Open Access Journals