Synthesis, quantum chemical calculations, in silico and in vitro bioactivity of a sulfonamide-Schiff base derivative

Autor: Md. Minhazul Abedin, Tarun Kumar Pal, Md. Najem Uddin, Mohammad Abdul Alim, Md. Chanmiya Sheikh, Subrata Paul
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Heliyon, Vol 10, Iss 14, Pp e34556- (2024)
Druh dokumentu: article
ISSN: 2405-8440
DOI: 10.1016/j.heliyon.2024.e34556
Popis: The sulfonamide Schiff base compound (E)-4-((4-(dimethylamino)benzylidene)amino)-N-(5-methylisoxazol-3-yl)benzenesulfonamide was successfully prepared and fully characterized. The foremost objective of this study was to explore the molecular geometry of the aforementioned compound and determine its drug likeness characteristics, docking ability as an insulysin inhibitor, anticancer and antioxidant activities. The molecular structure of this compound was optimized using the B3LYP/6−311G+(d,p) level of theory. The compound was completely characterized utilizing both experimental and DFT approaches. Molecular electrostatic potential, frontier molecular orbitals, Fukui function, drug likeness, and in silico molecular docking analyses of this compound were performed. Wave functional properties such as localized orbital locator, electron localization function and non-covalent interactions were also simulated. The compound was screened for anticancer and antioxidant activities using in vitro technique. The observed FT-IR, UV–Vis, and 1H NMR results compared with simulated data and both results were fairly consistent. The experimental and computational spectral findings confirm the formation of the Schiff base compound. Both π—π* and n—π* transitions were observed in both experimental and computational UV–Vis spectra. The examined compound followed to Pfizer, Golden Triangle, GSK, and Lipinski's rules. Consequently, it possesses a more favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile, making it a suitable candidate for non-toxic oral drug use. Moreover, the compound exhibited promising insulysin inhibition activity in an in silico molecular docking. The compound showed in vitro anticancer activity against A549 cancer cells with an IC50 value of 40.89 μg/mL and moderate antioxidant activity.
Databáze: Directory of Open Access Journals