Popis: |
Sediment denitrification, anaerobic ammonium oxidation (anammox), and nitrate dissimilation to ammonium (DNRA) play an important role in controlling the dynamics of nitrates (NOx−) and their fate in estuarine and coastal ecosystems. However, the effects of land-use change on NOx− reduction processes in mangrove sediments are still unclear. Here, we used a mud experiment method combined with a 15N stable isotope tracer method to study the mechanism and ecological environment of the change of land use pattern on the sediment NOx− reduction processes in mangrove wetlands. Our study showed that most physicochemical parameters, NOx− reduction rates, and their gene abundances varied considerably. The denitrification, anammox, and DNRA rates in mangrove sediment cores were in a range of 1.04–4.24 nmol g−1 h−1, 0.14–0.36 nmol g−1 h−1, and 0–2.72 nmol g−1 h−1, respectively. The denitrification, anammox, and DNRA rates in aquaculture sediment cores were in a range of 1.06–10.96 nmol g−1 h−1, 0.13–0.37 nmol g−1 h−1, and 0–1.96 nmol g−1 h−1, respectively. The highest values of denitrification, anammox, DNRA, the contribution of denitrification and DNRA to total NOx− reduction (DEN% and DNRA%), gene abundances (nirS, Amx 16S rRNA, and nrfA), total organic carbon (TOC), total nitrogen (TN), and TOC/TN in sediments were generally found in the top layer (0–5 cm) and then decreased with depth, while the contribution of anammox to total NOx− reduction (ANA%), Fe2+, and Fe2+/Fe3+ were generally increased with sediment depth in both mangrove and aquaculture ecosystems. When mangrove wetlands are transformed into pools, some properties (including TOC, TN, and Fe3+), DNRA rates, DRNA%, and nrfA gene abundances were decreased, while some properties (including NH4+, TOC/TN, Fe2+, and Fe2+/Fe3+), denitrification rates, DEN%, nirS, and ANAMMOX 16S gene abundances were increased. Sediment organic matter (TOC and TN) content and Fe2+ both affected NO3− reduction rates, with organic matter the most prominent factor. Thus, aquaculture reclamation enhances N loss while reducing N retention in sediments of mangrove wetlands, which plays an important role in regulating the source and fate of reactive N in mangrove ecosystems. |