Recent advances in seasonal and multi-annual tropical cyclone forecasting

Autor: Yuhei Takaya, Louis-Philippe Caron, Eric Blake, François Bonnardot, Nicolas Bruneau, Joanne Camp, Johnny Chan, Paul Gregory, Jhordanne J. Jones, Namyoung Kang, Philip J. Klotzbach, Yuriy Kuleshov, Marie-Dominique Leroux, Julia F. Lockwood, Hiroyuki Murakami, Akio Nishimura, Dushmanta R. Pattanaik, Tom J. Philp, Yohan Ruprich-Robert, Ralf Toumi, Frédéric Vitart, Seonghee Won, Ruifen Zhan
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Tropical Cyclone Research and Review, Vol 12, Iss 3, Pp 182-199 (2023)
Druh dokumentu: article
ISSN: 2225-6032
DOI: 10.1016/j.tcrr.2023.09.003
Popis: Seasonal tropical cyclone (TC) forecasting has evolved substantially since its commencement in the early 1980s. However, present operational seasonal TC forecasting services still do not meet the requirements of society and stakeholders: current operational products are mainly basin-scale information, while more detailed sub-basin scale information such as potential risks of TC landfall is anticipated for decision making. To fill this gap and make the TC science and services move forward, this paper reviews recent research and development in seasonal tropical cyclone (TC) forecasting. In particular, this paper features new research topics on seasonal TC predictability in neutral conditions of El Niño–Southern Oscillation (ENSO), emerging forecasting techniques of seasonal TC activity including Machine Learning/Artificial Intelligence, and multi-annual TC predictions. We also review the skill of forecast systems at predicting landfalling statistics for certain regions of the North Atlantic, Western North Pacific and South Indian oceans and discuss the gap that remains between current products and potential user's expectations. New knowledge and advanced forecasting techniques are expected to further enhance the capability of seasonal TC forecasting and lead to more actionable and fit-for-purpose products.
Databáze: Directory of Open Access Journals