A Modification Fractional Homotopy Perturbation Method for Solving Helmholtz and Coupled Helmholtz Equations on Cantor Sets

Autor: Dumitru Baleanu, Hassan Kamil Jassim
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Fractal and Fractional, Vol 3, Iss 2, p 30 (2019)
Druh dokumentu: article
ISSN: 2504-3110
DOI: 10.3390/fractalfract3020030
Popis: In this paper, we apply a new technique, namely, the local fractional Laplace homotopy perturbation method (LFLHPM), on Helmholtz and coupled Helmholtz equations to obtain analytical approximate solutions. The iteration procedure is based on local fractional derivative operators (LFDOs). This method is a combination of the local fractional Laplace transform (LFLT) and the homotopy perturbation method (HPM). The method in general is easy to implement and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the new technique.
Databáze: Directory of Open Access Journals