Analysis of the temperature-dependent plastic deformation of single crystals of quinary, quaternary and ternary equiatomic high- and medium-entropy alloys of the Cr-Mn-Fe-Co-Ni system

Autor: Le Li, Zhenghao Chen, Seiko Tei, Yusuke Matsuo, Ryosuke Chiba, Koretaka Yuge, Haruyuki Inui, Easo P. George
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Science and Technology of Advanced Materials, Vol 25, Iss 1 (2024)
Druh dokumentu: article
ISSN: 14686996
1878-5514
1468-6996
DOI: 10.1080/14686996.2024.2376524
Popis: Temperature-dependent plastic deformation behaviors of single crystals of quaternary and ternary equiatomic medium-entropy alloys (MEAs) belonging to the Cr-Mn-Fe-Co-Ni system were investigated in compression at temperatures in the range 9 K to 1373 K. Their critical resolved shear stresses (CRSSs) increase with decreasing temperature below room temperature. There is also a dulling of the temperature dependence of CRSS below 77 K due to dislocation inertial effects that we attribute to a decrease in the phonon drag coefficient. These behaviors were compared with those of previously investigated single crystals of the equiatomic Cr-Co-Ni and Cr-Fe-Co-Ni MEAs, and the equiatomic Cr-Mn-Fe-Co-Ni high-entropy alloy (HEA). The temperature dependence of CRSS and the apparent activation volumes below room temperature can be well described by conventional thermal activation theories of face-centered cubic (FCC) alloys. Above 673 K, there is a small increase in CRSS, which we believe is due to elastic interactions between solutes and mobile dislocations, the so-called Portevin-Le Chatelier (PL) effect. The CRSS at 0 K was obtained by extrapolation of fitted CRSS vs. temperature curves and compared with predictions from solid solution strengthening models of HEA and MEAs.
Databáze: Directory of Open Access Journals