Singular Hamiltonian elliptic systems involving double exponential growth in dimension two
Autor: | Yony Raúl Santaria Leuyacc |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Partial Differential Equations in Applied Mathematics, Vol 10, Iss , Pp 100681- (2024) |
Druh dokumentu: | article |
ISSN: | 2666-8181 |
DOI: | 10.1016/j.padiff.2024.100681 |
Popis: | In this research, we are interested to investigate the existence of nontrivial weak solutions to the following Hamiltonian elliptic system −div(ω(x)∇u)=g(v)|x|a,x∈B1(0),−div(ω(x)∇v)=f(u)|x|b,x∈B1(0),with Dirichlet boundary conditions, where a,b∈[0,2), the weight ω(x) is of logarithmic type and the nonlinearities f and g possess double exponential growth. To establish the existence of solutions, our approach involves utilizing the linking theorem and a finite-dimensional approximation. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |