Singular Hamiltonian elliptic systems involving double exponential growth in dimension two

Autor: Yony Raúl Santaria Leuyacc
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Partial Differential Equations in Applied Mathematics, Vol 10, Iss , Pp 100681- (2024)
Druh dokumentu: article
ISSN: 2666-8181
DOI: 10.1016/j.padiff.2024.100681
Popis: In this research, we are interested to investigate the existence of nontrivial weak solutions to the following Hamiltonian elliptic system −div(ω(x)∇u)=g(v)|x|a,x∈B1(0),−div(ω(x)∇v)=f(u)|x|b,x∈B1(0),with Dirichlet boundary conditions, where a,b∈[0,2), the weight ω(x) is of logarithmic type and the nonlinearities f and g possess double exponential growth. To establish the existence of solutions, our approach involves utilizing the linking theorem and a finite-dimensional approximation.
Databáze: Directory of Open Access Journals