Characterisation of Engineered Nanomaterials in Nano-Enabled Products Exhibiting Priority Environmental Exposure

Autor: Raisibe Florence Lehutso, Yolanda Tancu, Arjun Maity, Melusi Thwala
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Molecules, Vol 26, Iss 5, p 1370 (2021)
Druh dokumentu: article
ISSN: 26051370
1420-3049
DOI: 10.3390/molecules26051370
Popis: Analytical limitations have constrained the determination of nanopollution character from real-world sources such as nano-enabled products (NEPs), thus hindering the development of environmental safety guidelines for engineered nanomaterials (ENMs). This study examined the properties of ENMs in 18 commercial products: sunscreens, personal care products, clothing, and paints—products exhibiting medium to a high potential for environmental nanopollution. It was found that 17 of the products contained ENMs; 9, 3, 3, and 2 were incorporated with nTiO2, nAg, binaries of nZnO + nTiO2, and nTiO2 + nAg, respectively. Commonly, the nTiO2 were elongated or angular, whereas nAg and nZnO were near-spherical and angular in morphology, respectively. The size ranges (width × length) were 7–48 × 14–200, 34–35 × 37–38, and 18–28 nm for nTiO2, nZnO, and nAg respectively. All ENMs were negatively charged. The total concentration of Ti, Zn, and Ag in the NEPs were 2.3 × 10−4–4.3%, 3.4–4.3%, and 1.0 × 10−4–11.3 × 10−3%, respectively. The study determined some key ENM characteristics required for environmental risk assessment; however, challenges persist regarding the accurate determination of the concentration in NEPs. Overall, the study confirmed NEPs as actual sources of nanopollution; hence, scenario-specific efforts are recommended to quantify their loads into water resources.
Databáze: Directory of Open Access Journals