Autor: |
Wenqing Zuo, Baojian Wu, Yuxuan Wang, Shouzhen Xu, Jingshan Tian, Xingli Jiu, Hengyi Dong, Wangfeng Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Frontiers in Plant Science, Vol 14 (2023) |
Druh dokumentu: |
article |
ISSN: |
1664-462X |
DOI: |
10.3389/fpls.2023.1158329 |
Popis: |
ObjectiveIt is of great importance to explore agronomic management measures for water conservation and cotton yield in arid areas.MethodsA four–year field experiment was conducted to evaluate cotton yield and soil water consumption under four row spacing configurations (high/low density with 66+10 cm wide, narrow row spacing, RS66+10H and RS66+10L; high/low density with 76 cm equal row spacing, RS76H and RS76L) and two irrigation amounts (CI:conventional drip irrigation; LI:limited drip irrigation) during the growing seasons in Shihezi, Xinjiang.ResultsA quadratic relationship was observed between the maximum LAI (LAImax) and seed yield. Canopy apparent transpiration rate(CAT), daily water consumption intensity (DWCI) and crop evapotranspiration (ETC) were positively and linearly correlated with LAI. The seed yields, lint yields, and ETC under CI were 6.6–18.3%,7.1–20.8% and 22.9–32.6%higher than those observed under LI, respectively. The RS66+10H under CI had the highest seed and lint yields. RS76L had an optimum LAImax range, which ensured a higher canopy apparent photosynthesis and daily dry matter accumulation and reached the same yield level as RS66+10H; however, soil water consumption in RS76L was reduced ETC by 51–60 mm at a depth of 20–60 cm at a radius of 19–38 cm from the cotton row,and water use efficiency increased by 5.6–8.3%compared to RS66+10H under CI.ConclusionA 5.0 |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|