Neurotrophic factor Neuritin modulates T cell electrical and metabolic state for the balance of tolerance and immunity

Autor: Hong Yu, Hiroshi Nishio, Joseph Barbi, Marisa Mitchell-Flack, Paolo DA Vignali, Ying Zheng, Andriana Lebid, Kwang-Yu Chang, Juan Fu, Makenzie Higgins, Ching-Tai Huang, Xuehong Zhang, Zhiguang Li, Lee Blosser, Ada Tam, Charles Drake, Drew Pardoll
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: eLife, Vol 13 (2024)
Druh dokumentu: article
ISSN: 2050-084X
DOI: 10.7554/eLife.96812
Popis: The adaptive T cell response is accompanied by continuous rewiring of the T cell’s electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.
Databáze: Directory of Open Access Journals