Epoxy–PCM Composites with Nanocarbons or Multidimensional Boron Nitride as Heat Flow Enhancers

Autor: Richa Agrawal, Joshua Hanna, I. Emre Gunduz, Claudia C. Luhrs
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Molecules, Vol 24, Iss 10, p 1883 (2019)
Druh dokumentu: article
ISSN: 1420-3049
DOI: 10.3390/molecules24101883
Popis: The need for affordable systems that are capable of regulating the temperature of living or storage spaces has increased the interest in exploring phase change materials (PCMs) for latent heat thermal energy storage (LHTES). This study investigates n-nonadecane (C19H40) and n-eicosane (C20H42) as alkane hydrocarbons/paraffins for LHTES applications. An epoxy resin is used as the support matrix medium to mitigate paraffin leakage, and a thickening agent is utilized to suppress phase separation during the curing process. In order to enhance the thermal conductivity of the epoxy–paraffin composite, conductive agents including carbon nanofibers (CNFs), carbon nanotubes (CNTs), boron nitride (BN) microparticles, or boron nitride nanotubes (BNNTs) are incorporated in different gravimetric ratios. Enhancements in latent heat, thermal conductivity, and heat transfer are realized with the addition of the thermal fillers. The sample composition with 10 wt.% BN shows excellent reversibility upon extended heating–cooling cycles and adequate viscosity for template casting as well as direct three-dimensional (3D) printing on fabrics, demonstrating the feasibility for facile integration onto liners/containers for thermal regulation purposes.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje