Autor: |
Kirsten E. Diggins, Elisavet Serti, Virginia Muir, Mario Rosasco, TingTing Lu, Elisa Balmas, Gerald Nepom, S. Alice Long, Peter S. Linsley |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
JCI Insight, Vol 6, Iss 3 (2021) |
Druh dokumentu: |
article |
ISSN: |
2379-3708 |
DOI: |
10.1172/jci.insight.142680 |
Popis: |
Clinical trials of biologic therapies in type 1 diabetes (T1D) aim to mitigate autoimmune destruction of pancreatic β cells through immune perturbation and serve as resources to elucidate immunological mechanisms in health and disease. In the T1DAL trial of alefacept (LFA3-Ig) in recent-onset T1D, endogenous insulin production was preserved in 30% of subjects for 2 years after therapy. Given our previous findings linking exhausted-like CD8+ T cells to beneficial response in T1D trials, we applied unbiased analyses to sorted CD8+ T cells to evaluate their potential role in T1DAL. Using RNA sequencing, we found that greater insulin C-peptide preservation was associated with a module of activation- and exhaustion-associated genes. This signature was dissected into 2 CD8 memory phenotypes through correlation with cytometry data. These cells were hypoproliferative, shared expanded rearranged TCR junctions, and expressed exhaustion-associated markers including TIGIT and KLRG1. The 2 phenotypes could be distinguished by reciprocal expression of CD8+ T and NK cell markers (GZMB, CD57, and inhibitory killer cell immunoglobulin-like receptor [iKIR] genes), versus T cell activation and differentiation markers (PD-1 and CD28). These findings support previous evidence linking exhausted-like CD8+ T cells to successful immune interventions for T1D, while suggesting that multiple inhibitory mechanisms can promote this beneficial cell state. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|