Autor: |
Zeyang Wen, Gongliu Yang, Qingzhong Cai |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Sensors, Vol 21, Iss 15, p 5055 (2021) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s21155055 |
Popis: |
In the field of high accuracy strapdown inertial navigation system (SINS), the inertial measurement unit (IMU) biases can severely affect the navigation accuracy. Traditionally we use Kalman filter (KF) to estimate those biases. However, KF is an unbiased estimation method based on the assumption of Gaussian white noise (GWN) while IMU sensors noise is irregular. Kalman filtering will no longer be accurate when the sensor’s noise is irregular. In order to obtain the optimal solution of the IMU biases, this paper proposes a novel method for the calibration of IMU biases utilizing the KF-based AdaGrad algorithm to solve this problem. Three improvements were made as the following: (1) The adaptive subgradient method (AdaGrad) is proposed to overcome the difficulty of setting step size. (2) A KF-based AdaGrad numerical function is derived and (3) a KF-based AdaGrad calibration algorithm is proposed in this paper. Experimental results show that the method proposed in this paper can effectively improve the accuracy of IMU biases in both static tests and car-mounted field tests. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|