Autor: |
Lingxiao Li, Lunsu Liang, Yuhao Wang, Jiyan Liu, Minghan Sun, Pei Zhao, Junhua Hu, Guangtao Xu, Gang Wang, Kai Xu |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Journal of Materials Research and Technology, Vol 33, Iss , Pp 9674-9692 (2024) |
Druh dokumentu: |
article |
ISSN: |
2238-7854 |
DOI: |
10.1016/j.jmrt.2024.11.271 |
Popis: |
This study investigates the effects of orientation and strain rate on the hydrogen-enhanced localized plasticity mechanism during shear deformation of interstitial free steel. The stress-orientation correlation of hydrogen embrittlement is related to atomic-scale mechanisms, as evidenced through in situ electron backscatter diffraction, slow-strain-rate shear testing, electron microscopic characterization, and molecular dynamics simulations. The dislocation density increment after hydrogen charging was 59.25% higher along the [100] crystallographic zone axis than along the [11‾1‾] crystallographic zone axis, which is mainly attributed to the combined effect of strain-induced transport and interstitial diffusion of hydrogen atoms. The strain rate correlation of hydrogen embrittlement is also affected by the interstitial diffusion during the strain-induced transport of H. Interstitial diffused hydrogen induce dislocation forest emissions that promote local plasticity, which ultimately leads to the orientation and strain rate correlation of hydrogen embrittlement. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|