Autor: |
Dharik Sanchan Mallapragada, Emre Gençer, Patrick Insinger, David William Keith, Francis Martin O’Sullivan |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Cell Reports Physical Science, Vol 1, Iss 9, Pp 100174- (2020) |
Druh dokumentu: |
article |
ISSN: |
2666-3864 |
DOI: |
10.1016/j.xcrp.2020.100174 |
Popis: |
Summary: Expanding decarbonization efforts beyond the power sector are contingent on cost-effective production of energy carriers, like H2, with near-zero life-cycle carbon emissions. Here, we assess the levelized cost of continuous H2 supply (95% availability) at industrial-scale quantities (∼100 tonnes/day) in 2030 from integrating commodity technologies for solar photovoltaics, electrolysis, and energy storage. Our approach relies on modeling the least-cost plant design and operation that optimize component sizes while adhering to hourly solar availability, production requirements, and component inter-temporal operating constraints. We apply the model to study H2 production costs spanning the continental United States and, through extensive sensitivity analysis, explore system configurations that can achieve $2.5/kg levelized costs or less for a range of plausible 2030 technology projections at high-irradiance locations. Notably, we identify potential sites and system configurations where PV-electrolytic H2 could substitute natural gas-derived H2 at avoided CO2 costs (≤$120/ton), similar to the cost of deploying carbon capture and sequestration. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|