Functional 2D Nanoplatforms Alleviate Eosinophilic Chronic Rhinosinusitis by Modulating Eosinophil Extracellular Trap Formation

Autor: Zhaoxu Tu, Ming Liu, Changyi Xu, Yi Wei, Tong Lu, Yongqiang Xiao, Hongxia Li, Shuaiyin Zhang, Xinran Xie, Jian Li, Weiping Wen
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Advanced Science, Vol 11, Iss 19, Pp n/a-n/a (2024)
Druh dokumentu: article
ISSN: 2198-3844
DOI: 10.1002/advs.202307800
Popis: Abstract The therapeutic outcomes of patients with eosinophilic chronic rhinosinusitis (ECRS) remain unsatisfactory, largely because the underlying mechanisms of eosinophilic inflammation are uncertain. Here, it is shown that the nasal secretions of ECRS patients have high eosinophil extracellular trap (EET) and cell‐free DNA (cfDNA) levels. Moreover, the cfDNA induced EET formation by activating toll‐like receptor 9 (TLR9) signaling. After demonstrating that DNase I reduced eosinophilic inflammation by modulating EET formation, linear polyglycerol‐amine (LPGA)‐coated TiS2 nanosheets (TLPGA) as functional 2D nanoplatforms with low cytotoxicity, mild protein adsorption, and increased degradation rate is developed. Due to the more flexible linear architecture, TLPGA exhibited higher cfDNA affinity than the TiS2 nanosheets coated with dendritic polyglycerol‐amine (TDPGA). TLPGA reduced cfDNA levels in the nasal secretions of ECRS patients while suppressing cfDNA‐induced TLR9 activation and EET formation in vitro. TLPGA displayed exceptional biocompatibility, preferential nasal localization, and potent inflammation modulation in mice with eosinophilic inflammation. These results highlight the pivotal feature of the linear molecular architecture and 2D sheet‐like nanostructure in the development of anti‐inflammation nanoplatforms, which can be exploited for ECRS treatment.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje