Blind Deblurring of Saturated Images Based on Optimization and Deep Learning for Dynamic Visual Inspection on the Assembly Line

Autor: Bodi Wang, Guixiong Liu, Junfang Wu
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Symmetry, Vol 11, Iss 5, p 678 (2019)
Druh dokumentu: article
ISSN: 2073-8994
DOI: 10.3390/sym11050678
Popis: Image deblurring can improve visual quality and mitigates motion blur for dynamic visual inspection. We propose a method to deblur saturated images for dynamic visual inspection by applying blur kernel estimation and deconvolution modeling. The blur kernel is estimated in a transform domain, whereas the deconvolution model is decoupled into deblurring and denoising stages via variable splitting. Deblurring predicts the mask specifying saturated pixels, which are then discarded, and denoising is learned via the fast and flexible denoising network (FFDNet) convolutional neural network (CNN) at a wide range of noise levels. Hence, the proposed deconvolution model provides the benefits of both model optimization and deep learning. Experiments demonstrate that the proposed method suitably restores visual quality and outperforms existing approaches with good score improvements.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje