A One-Parameter Memoryless DFP Algorithm for Solving System of Monotone Nonlinear Equations with Application in Image Processing
Autor: | Najib Ullah, Abdullah Shah, Jamilu Sabi’u, Xiangmin Jiao, Aliyu Muhammed Awwal, Nuttapol Pakkaranang, Said Karim Shah, Bancha Panyanak |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Mathematics, Vol 11, Iss 5, p 1221 (2023) |
Druh dokumentu: | article |
ISSN: | 11051221 2227-7390 |
DOI: | 10.3390/math11051221 |
Popis: | In matrix analysis, the scaling technique reduces the chances of an ill-conditioning of the matrix. This article proposes a one-parameter scaling memoryless Davidon–Fletcher–Powell (DFP) algorithm for solving a system of monotone nonlinear equations with convex constraints. The measure function that involves all the eigenvalues of the memoryless DFP matrix is minimized to obtain the scaling parameter’s optimal value. The resulting algorithm is matrix and derivative-free with low memory requirements and is globally convergent under some mild conditions. A numerical comparison showed that the algorithm is efficient in terms of the number of iterations, function evaluations, and CPU time. The performance of the algorithm is further illustrated by solving problems arising from image restoration. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |