Bento: a toolkit for subcellular analysis of spatial transcriptomics data

Autor: Clarence K. Mah, Noorsher Ahmed, Nicole A. Lopez, Dylan C. Lam, Avery Pong, Alexander Monell, Colin Kern, Yuanyuan Han, Gino Prasad, Anthony J. Cesnik, Emma Lundberg, Quan Zhu, Hannah Carter, Gene W. Yeo
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Genome Biology, Vol 25, Iss 1, Pp 1-25 (2024)
Druh dokumentu: article
ISSN: 1474-760X
DOI: 10.1186/s13059-024-03217-7
Popis: Abstract The spatial organization of molecules in a cell is essential for their functions. While current methods focus on discerning tissue architecture, cell–cell interactions, and spatial expression patterns, they are limited to the multicellular scale. We present Bento, a Python toolkit that takes advantage of single-molecule information to enable spatial analysis at the subcellular scale. Bento ingests molecular coordinates and segmentation boundaries to perform three analyses: defining subcellular domains, annotating localization patterns, and quantifying gene–gene colocalization. We demonstrate MERFISH, seqFISH + , Molecular Cartography, and Xenium datasets. Bento is part of the open-source Scverse ecosystem, enabling integration with other single-cell analysis tools.
Databáze: Directory of Open Access Journals