On a generalization of the Pell sequence

Autor: Jhon J. Bravo, Jose L. Herrera, Florian Luca
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Mathematica Bohemica, Vol 146, Iss 2, Pp 199-213 (2021)
Druh dokumentu: article
ISSN: 0862-7959
2464-7136
DOI: 10.21136/MB.2020.0098-19
Popis: The Pell sequence $(P_n)_{n=0}^{\infty}$ is the second order linear recurrence defined by $P_n=2P_{n-1}+P_{n-2}$ with initial conditions $P_0=0$ and $P_1=1$. In this paper, we investigate a generalization of the Pell sequence called the $k$-generalized Pell sequence which is generated by a recurrence relation of a higher order. We present recurrence relations, the generalized Binet formula and different arithmetic properties for the above family of sequences. Some interesting identities involving the Fibonacci and generalized Pell numbers are also deduced.
Databáze: Directory of Open Access Journals