Autor: |
Jizuo Zhang, Jianjun Chen, Pengcheng Huang, Shouping Li, Liang Fang |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Symmetry, Vol 11, Iss 2, p 154 (2019) |
Druh dokumentu: |
article |
ISSN: |
2073-8994 |
DOI: |
10.3390/sym11020154 |
Popis: |
In a triple-well NMOSFET, a deep n+ well (DNW) is buried in the substrate to isolate the substrate noise. The presence of this deep n+ well leads to changes in single-event transient effects compared to bulk NMOSFET. In space, a single cosmic particle can deposit enough charge in the sensitive volume of a semiconductor device to cause a potential change in the transient state, that is, a single-event transient (SET). In this study, a quantitative characterization of the effect of a DNW on a SET in a 65 nm triple-well NMOSFET was performed using heavy ion experiments. Compared with a bulk NMOSFET, the experimental data show that the percentages of average increase of a SET pulse width are 22% (at linear energy transfer (LET) = 37.4 MeV·cm2/mg) and 23% (at LET = 22.2 MeV·cm2/mg) in a triple-well NMOSFET. This study indicates that a triple-well NMOSFET is more sensitive to a SET, which means that it may not be appropriate for radiation hardened integrated circuit design compared with a bulk NMOSFET. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|