Materials cartography: A forward-looking perspective on materials representation and devising better maps

Autor: Steven B. Torrisi, Martin Z. Bazant, Alexander E. Cohen, Min Gee Cho, Jens S. Hummelshøj, Linda Hung, Gaurav Kamat, Arash Khajeh, Adeesh Kolluru, Xiangyun Lei, Handong Ling, Joseph H. Montoya, Tim Mueller, Aini Palizhati, Benjamin A. Paren, Brandon Phan, Jacob Pietryga, Elodie Sandraz, Daniel Schweigert, Yang Shao-Horn, Amalie Trewartha, Ruijie Zhu, Debbie Zhuang, Shijing Sun
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: APL Machine Learning, Vol 1, Iss 2, Pp 020901-020901-11 (2023)
Druh dokumentu: article
ISSN: 2770-9019
36535850
DOI: 10.1063/5.0149804
Popis: Machine learning (ML) is gaining popularity as a tool for materials scientists to accelerate computation, automate data analysis, and predict materials properties. The representation of input material features is critical to the accuracy, interpretability, and generalizability of data-driven models for scientific research. In this Perspective, we discuss a few central challenges faced by ML practitioners in developing meaningful representations, including handling the complexity of real-world industry-relevant materials, combining theory and experimental data sources, and describing scientific phenomena across timescales and length scales. We present several promising directions for future research: devising representations of varied experimental conditions and observations, the need to find ways to integrate machine learning into laboratory practices, and making multi-scale informatics toolkits to bridge the gaps between atoms, materials, and devices.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje