Autor: |
Alastair Craw, Liana Heuberger, Jesus Tapia Amador |
Jazyk: |
English<br />French |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Épijournal de Géométrie Algébrique, Vol Volume 5 (2021) |
Druh dokumentu: |
article |
ISSN: |
2491-6765 |
DOI: |
10.46298/epiga.2021.volume5.6085 |
Popis: |
Reid's recipe for a finite abelian subgroup $G\subset \text{SL}(3,\mathbb{C})$ is a combinatorial procedure that marks the toric fan of the $G$-Hilbert scheme with irreducible representations of $G$. The geometric McKay correspondence conjecture of Cautis--Logvinenko that describes certain objects in the derived category of $G\text{-Hilb}$ in terms of Reid's recipe was later proved by Logvinenko et al. We generalise Reid's recipe to any consistent dimer model by marking the toric fan of a crepant resolution of the vaccuum moduli space in a manner that is compatible with the geometric correspondence of Bocklandt--Craw--Quintero-V\'{e}lez. Our main tool generalises the jigsaw transformations of Nakamura to consistent dimer models. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|