Combinatorial Reid's recipe for consistent dimer models

Autor: Alastair Craw, Liana Heuberger, Jesus Tapia Amador
Jazyk: English<br />French
Rok vydání: 2021
Předmět:
Zdroj: Épijournal de Géométrie Algébrique, Vol Volume 5 (2021)
Druh dokumentu: article
ISSN: 2491-6765
DOI: 10.46298/epiga.2021.volume5.6085
Popis: Reid's recipe for a finite abelian subgroup $G\subset \text{SL}(3,\mathbb{C})$ is a combinatorial procedure that marks the toric fan of the $G$-Hilbert scheme with irreducible representations of $G$. The geometric McKay correspondence conjecture of Cautis--Logvinenko that describes certain objects in the derived category of $G\text{-Hilb}$ in terms of Reid's recipe was later proved by Logvinenko et al. We generalise Reid's recipe to any consistent dimer model by marking the toric fan of a crepant resolution of the vaccuum moduli space in a manner that is compatible with the geometric correspondence of Bocklandt--Craw--Quintero-V\'{e}lez. Our main tool generalises the jigsaw transformations of Nakamura to consistent dimer models.
Databáze: Directory of Open Access Journals