Multi-Source Data Repairing: A Comprehensive Survey
Autor: | Chen Ye, Haoyang Duan, Hengtong Zhang, Hua Zhang, Hongzhi Wang, Guojun Dai |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Mathematics, Vol 11, Iss 10, p 2314 (2023) |
Druh dokumentu: | article |
ISSN: | 11102314 2227-7390 |
DOI: | 10.3390/math11102314 |
Popis: | In the era of Big Data, integrating information from multiple sources has proven valuable in various fields. To ensure a high-quality supply of multi-source data, repairing different types of errors in the multi-source data becomes critical. This paper categorizes errors in multi-source data into entity information overlapping, attribute value conflicts, and attribute value inconsistencies. We first summarize existing repairing methods for these errors and then examine and review the study of the detection and repair of compound-type errors in multi-source data. Finally, we indicate further research directions in multi-source data repair. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |