Tangent complexes and the Diamond Lemma

Autor: Vladimir Dotsenko, Pedro Tamaroff
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Bulletin of Mathematical Sciences, Vol 14, Iss 03 (2024)
Druh dokumentu: article
ISSN: 16643607
1664-3615
1664-3607
DOI: 10.1142/S1664360723500133
Popis: The celebrated Diamond Lemma of Bergman gives an effectively verifiable criterion of uniqueness of normal forms for term rewriting in associative algebras. We revisit that result in the context of deformation theory and homotopical algebra; this leads to a new proof using multiplicative free resolutions. Specifically, our main result states that every such resolution of an algebra with monomial relations gives rise to its own Diamond Lemma, where Bergman’s condition of “resolvable ambiguities” is precisely the first nontrivial component of the Maurer–Cartan equation in the corresponding tangent complex. The same approach works for many other algebraic structures, emphasizing the relevance of computing resolutions of algebras with monomial relations.
Databáze: Directory of Open Access Journals