A Physical Phenomenon for the Fractional Nonlinear Mixed Integro-Differential Equation Using a Quadrature Nystrom Method
Autor: | A. R. Jan, M. A. Abdou, M. Basseem |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Fractal and Fractional, Vol 7, Iss 9, p 656 (2023) |
Druh dokumentu: | article |
ISSN: | 2504-3110 84140828 |
DOI: | 10.3390/fractalfract7090656 |
Popis: | In this work, the existence and uniqueness solution of the fractional nonlinear mixed integro-differential equation (FrNMIoDE) is guaranteed with a general discontinuous kernel based on position and time-space L2Ω×C0,T, T<1. The FrNMIoDE conformed to the Volterra-Hammerstein integral equation (V-HIE) of the second kind, after applying the characteristics of a fractional integral, with a general discontinuous kernel in position for the Hammerstein integral term and a continuous kernel in time to the Volterra integral (VI) term. Then, using a separation technique methodology, we developed HIE, whose physical coefficients were time-variable. By examining the system’s convergence, the product Nystrom technique (PNT) and associated schemes were employed to create a nonlinear algebraic system (NAS). |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |