MICAnet: A Deep Convolutional Neural Network for mineral identification on Martian surface

Autor: Priyanka Kumari, Sampriti Soor, Amba Shetty, Shashidhar G. Koolagudi
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Egyptian Journal of Remote Sensing and Space Sciences, Vol 27, Iss 3, Pp 501-507 (2024)
Druh dokumentu: article
ISSN: 1110-9823
DOI: 10.1016/j.ejrs.2024.06.001
Popis: Mineral identification plays a vital role in understanding the diversity and past habitability of the Martian surface. Mineral mapping by the traditional manual method is time-consuming and the unavailability of ground truth data limited the research on building supervised learning models. To address this issue an augmentation process is already proposed in the literature that generates training data replicating the spectra in the MICA (Minerals Identified in CRISM Analysis) spectral library while preserving absorption signatures and introducing variability. This study introduces MICAnet, a specialized Deep Convolutional Neural Network (DCNN) architecture for mineral identification using the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) hyperspectral data. MICAnet is inspired by the Inception-v3 and InceptionResNet-v1 architectures, but it is tailored with 1-dimensional convolutions for processing the spectra at the pixel level of a hyperspectral image. To the best of the authors’ knowledge, this is the first DCNN architecture solely dedicated to mineral identification on the Martian surface. The model is evaluated by its matching with a TRDR (Targeted Reduced Data Record) dataset obtained using a hierarchical Bayesian model. The results demonstrate an impressive f-score of at least .77 among different mineral groups in the MICA library, which is on par with or better than the unsupervised models previously applied to this objective.
Databáze: Directory of Open Access Journals