On periodic rings

Autor: Xiankun Du, Qi Yi
Jazyk: angličtina
Rok vydání: 2001
Předmět:
Zdroj: International Journal of Mathematics and Mathematical Sciences, Vol 25, Iss 6, Pp 417-420 (2001)
Druh dokumentu: article
ISSN: 0161-1712
1687-0425
01611712
DOI: 10.1155/S0161171201001181
Popis: It is proved that a ring is periodic if and only if, for any elements x and y, there exist positive integers k,l,m, and n with either k≠m or l≠n, depending on x and y, for which xkyl=xmyn. Necessary and sufficient conditions are established for a ring to be a direct sum of a nil ring and a J-ring.
Databáze: Directory of Open Access Journals