On periodic rings
Autor: | Xiankun Du, Qi Yi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2001 |
Předmět: | |
Zdroj: | International Journal of Mathematics and Mathematical Sciences, Vol 25, Iss 6, Pp 417-420 (2001) |
Druh dokumentu: | article |
ISSN: | 0161-1712 1687-0425 01611712 |
DOI: | 10.1155/S0161171201001181 |
Popis: | It is proved that a ring is periodic if and only if, for any elements x and y, there exist positive integers k,l,m, and n with either k≠m or l≠n, depending on x and y, for which xkyl=xmyn. Necessary and sufficient conditions are established for a ring to be a direct sum of a nil ring and a J-ring. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |