Popis: |
Global dust events have become more frequent due to climate change and increased human activity, significantly impacting air quality and human health. Previous studies have mainly focused on determining atmospheric dust pollution levels through atmospheric parameter simulations or AOD values obtained from satellite remote sensing. However, research on the quantitative description of dust intensity and its cross-regional transport characteristics still faces numerous challenges. Therefore, this study utilized Fengyun-4A (FY-4A) satellite Advanced Geostationary Radiation Imager (AGRI) imagery, Cloud-Aerosol Lidar, and Infrared Pathfinder Satellite Observation (CALIPSO) lidar, and other auxiliary data, to conduct three-dimensional spatiotemporal monitoring and a cross-regional transport analysis of two typical dust events in the Beijing–Tianjin–Hebei (BTH) region of China using four dust intensity indices Infrared Channel Shortwave Dust (Icsd), Dust Detection Index (DDI), dust value (DV), and Dust Strength Index (DSI)) and the HYSPLIT model. We found that among the four indices, DDI was the most suitable for studying dust in the BTH region, with a detection accuracy (POCD) of >88% at all times and reaching a maximum of 96.14%. Both the 2021 and 2023 dust events originated from large-scale deforestation in southern Mongolia and the border area of Inner Mongolia, with dust plumes distributed between 2 and 12 km being transported across regions to the BTH area. Further, when dust aerosols are primarily concentrated below 4 km and PM10 concentrations consistently exceed 600 µg/m3, large dust storms are more likely to occur in the BTH region. The findings of this study provide valuable insights into the sources, transport pathways, and environmental impacts of dust aerosols. |