Popis: |
Due to the worldwide COVID-19 pandemic, university education has faced a significant challenge that requires adaptation to virtual and online education. Here, a fruitful flipped methodology with increased popularity can support adaption to and improvement of the current pandemic situation. This research presents a comparison of two different instruction situations with an identical teaching methodology, face-to-face (F2F) and face-to-screen (F2S) flipped methodology, in terms of students' performance and affective domain in a science, technology, engineering and mathematics (STEM) course. It was considered and designed as an examination of 132 pre-service teachers (PSTs), with 68 and 64 PSTs respectively for each group. The first group before the pandemic was applied by F2F flipped classroom and the second group after the pandemic was applied by F2S flipped classroom. The results after pertaining various data analyses of class activities and questionaries showed that performance had been improved for both groups toward the course. In addition, F2F had a significant difference in PSTs' emotion and perception toward the course and made classes more interactive. The mean score values of students' emotion and perception between two groups showed that the difference between these mean values were significant, suggesting a very large effect. Particularly, the effect size (ES) showed that positive emotions were more significant with different variables and the items Q7–Q9 of questionnaires indicated more significant different perceptions for both F2F and F2S after completing the course. Finally, the principal component analysis (PCA) test described that F2F answers were located mainly in the positive emotion, while F2S answers were grouped in the negative emotion, while no differences were observed for PSTs perceptions to the flipped methodology. Consequently, although F2F–F2S transition was an effective process, instructors and PSTs faced difficulties in the platform usage for online lectures reflecting emotions' results in F2S group. Thus, by solving the problems raised, it will allow PSTs to be more interactive in a virtual and online context for their future implementation by giving them active instruction methodology and educating future students to teach STEM contents. |