Autor: |
Xiaona Xie, Zeqian Liu, Yuanshuai Wang, Haoyue Fu, Mengqi Liu, Yingqin Zhang, Jinbo Xu |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Entropy, Vol 26, Iss 8, p 645 (2024) |
Druh dokumentu: |
article |
ISSN: |
1099-4300 |
DOI: |
10.3390/e26080645 |
Popis: |
Traditional image classification usually relies on manual feature extraction; however, with the rapid development of artificial intelligence and intelligent vision technology, deep learning models such as CNNs can automatically extract key features from input images to achieve efficient classification. This study focuses on the application of lightweight separable convolutional neural networks in domain-specific image classification tasks. In this paper, we discuss how to use the SSDLite object detection algorithm combined with the MobileNetV2 lightweight convolutional architecture for puppet dynasty recognition from images—a novel and challenging task. By constructing a system that combines object detection and image classification, we aimed to solve the problem of automatic puppet dynasty recognition to reduce manual intervention and improve recognition efficiency and accuracy. We hope that this will have significant implications in the fields of cultural protection and art history research. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|