Study of Mechanical and Thermal Properties in Nano-Hydroxyapatite/Chitosan/Carboxymethyl Cellulose Nanocomposite-Based Scaffold for Bone Tissue Engineering: The Roles of Carboxymethyl Cellulose

Autor: Aminatun, Dyah Hikmawati, Prihartini Widiyanti, Tahta Amrillah, Astri Nia W., Ilena Tio Firdania, Che Azurahanim Che Abdullah
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Applied Sciences, Vol 10, Iss 19, p 6970 (2020)
Druh dokumentu: article
ISSN: 2076-3417
DOI: 10.3390/app10196970
Popis: Synthetic scaffolding for bone tissue engineering (BTE) has been widely utilized. The scaffold for BTE requires sufficient porosity as a template for bone cell development and growth so that it can be used in the treatment of bone defects and fractures. Nevertheless, the porosity significantly influences the compressive strength of the scaffold. Hence, controlling the porosity is a pivotal role to obtain a proper scaffold for practical BTE application. Herein, we fabricated the nanocomposite-based scaffold utilizing nano-hydroxyapatite (n-HA). The scaffold was prepared in combination with chitosan (Ch) and carboxymethyl cellulose (CMC). The ratios of n-HA, Ch, and CMC used were 40:60:0, 40:55:5, 40:50:10, 40:45:15, and 40:40:20, respectively. By controlling the Ch and CMC composition, we can tune the porosity of the nanocomposite. We found that the interpolation of the CMC prevails, as a crosslinker reinforces the nanocomposite. In addition, the binding to Ch enhanced the compressive strength of the scaffold. Thermal characteristics revealed the coefficient of thermal expansion decreases with increasing CMC content. The nanocomposite does not expand at 25–75 °C, which is suitable for human body temperature. Therefore, this nanocomposite-based scaffold is feasible for BTE application.
Databáze: Directory of Open Access Journals