Autor: |
Tan Wang, Yanlin Ge, Lingen Chen, Huijun Feng, Jiuyang Yu |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Entropy, Vol 23, Iss 10, p 1285 (2021) |
Druh dokumentu: |
article |
ISSN: |
1099-4300 |
DOI: |
10.3390/e23101285 |
Popis: |
Using finite-time thermodynamics, a model of an endoreversible Carnot cycle for a space power plant is established in this paper. The expressions of the cycle power output and thermal efficiency are derived. Using numerical calculations and taking the cycle power output as the optimization objective, the surface area distributions of three heat exchangers are optimized, and the maximum power output is obtained when the total heat transfer area of the three heat exchangers of the whole plant is fixed. Furthermore, the double-maximum power output is obtained by optimizing the temperature of a low-temperature heat sink. Finally, the influences of fixed plant parameters on the maximum power output performance are analyzed. The results show that there is an optimal temperature of the low-temperature heat sink and a couple of optimal area distributions that allow one to obtain the double-maximum power output. The results obtained have some guidelines for the design and optimization of actual space power plants. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|