Autor: |
Meng Zhao, Wan-Tong Li, Yang Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Mathematical Biosciences and Engineering, Vol 16, Iss 5, Pp 5991-6014 (2019) |
Druh dokumentu: |
article |
ISSN: |
1551-0018 |
DOI: |
10.3934/mbe.2019300?viewType=HTML |
Popis: |
This paper deals with the propagation dynamics of an epidemic model, which is modeled by a partially degenerate reaction-diffusion-advection system with free boundaries and sigmoidal function. We focus on the effect of small advection on the propagation dynamics of the epidemic disease. At first, the global existence and uniqueness of solution are obtained. And then, the spreading-vanishing dichotomy and the criteria for spreading and vanishing are given. Our results imply that the small advection make the disease spread more difficult. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|