Autor: |
Prasoon Kumar Vinodkumar, Dogus Karabulut, Egils Avots, Cagri Ozcinar, Gholamreza Anbarjafari |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Entropy, Vol 25, Iss 4, p 635 (2023) |
Druh dokumentu: |
article |
ISSN: |
1099-4300 |
DOI: |
10.3390/e25040635 |
Popis: |
The computer vision, graphics, and machine learning research groups have given a significant amount of focus to 3D object recognition (segmentation, detection, and classification). Deep learning approaches have lately emerged as the preferred method for 3D segmentation problems as a result of their outstanding performance in 2D computer vision. As a result, many innovative approaches have been proposed and validated on multiple benchmark datasets. This study offers an in-depth assessment of the latest developments in deep learning-based 3D object recognition. We discuss the most well-known 3D object recognition models, along with evaluations of their distinctive qualities. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|