Unsupervised Change Detection in HR Remote Sensing Imagery Based on Local Histogram Similarity and Progressive Otsu

Autor: Yuzhen Shen, Yuchun Wei, Hong Zhang, Xudong Rui, Bingbing Li, Junshu Wang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Remote Sensing, Vol 16, Iss 8, p 1357 (2024)
Druh dokumentu: article
ISSN: 2072-4292
DOI: 10.3390/rs16081357
Popis: Unsupervised change detection of land cover in multispectral satellite remote sensing images with a spatial resolution of 2–5 m has always been a challenging task. This paper presents a method of detecting land cover changes in high-spatial-resolution remote sensing imagery. This method has three characteristics: (1) Extended center-symmetric local binary pattern (XCS-LBP) is used to extract image features to emphasize spatial context information in initial change detection. Then, spectral information is combined to improve the accuracy of change detection. (2) The local histogram distance of XCS-LBP features is used as the change vector to improve the expression of change information. (3) A progressive Otsu method is developed for threshold segmentation of the change vector to reduce the false detection rate. Four datasets with different landscape complexities and seven state-of-the-art unsupervised change detection methods were used to test the performance of the proposed method. Quantitative results showed that the proposed method reduced the false detection rate and improved the accuracy of the detection of land cover changes. The F1 score achieved by the proposed method reached 0.8688, 0.8867, 0.7725, and 0.6634, respectively, which are higher than the highest corresponding F1 score achieved by the benchmark methods (0.8533, 0.8549, 0.6545, and 0.5895, respectively).
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje