A Class of Spectral Element Methods and Its A Priori/A Posteriori Error Estimates for 2nd-Order Elliptic Eigenvalue Problems
Autor: | Jiayu Han, Yidu Yang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Abstract and Applied Analysis, Vol 2013 (2013) |
Druh dokumentu: | article |
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2013/262010 |
Popis: | This paper discusses spectral and spectral element methods with Legendre-Gauss-Lobatto nodal basis for general 2nd-order elliptic eigenvalue problems. The special work of this paper is as follows. (1) We prove a priori and a posteriori error estimates for spectral and spectral element methods. (2) We compare between spectral methods, spectral element methods, finite element methods and their derived p-version, h-version, and hp-version methods from accuracy, degree of freedom, and stability and verify that spectral methods and spectral element methods are highly efficient computational methods. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |