Autor: |
Haiyan Ji, Panpan Lu, Baochi Liu, Xiying Qu, Yanan Wang, Zhengtao Jiang, Xinyi Yang, Yangcheng Zhong, He Yang, Hanyu Pan, Lin Zhao, Jianqing Xu, Hongzhou Lu, Huanzhang Zhu |
Jazyk: |
angličtina |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
Molecular Therapy: Nucleic Acids, Vol 12, Iss , Pp 67-74 (2018) |
Druh dokumentu: |
article |
ISSN: |
2162-2531 |
DOI: |
10.1016/j.omtn.2018.04.014 |
Popis: |
Highly active anti-retroviral therapy (HAART) cannot clear infected cells harboring HIV-1 proviral DNA from HIV-1-infected patients. We previously demonstrated that zinc-finger nucleases (ZFNs) can specifically and efficiently excise HIV-1 proviral DNA from latently infected human T cells by targeting long terminal repeats (LTRs), a novel and alternative antiretroviral strategy for eradicating HIV-1 infection. To prevent unwanted off-target effects from constantly expressed ZFNs, in this study, we engineered the expression of ZFNs under the control of HIV-1 LTR, by which ZFN expression can be activated by the HIV-1 (Trans-Activator of Transcription) Tat protein. Our results show that functional expression of ZFNs induced by Tat excise the integrated proviral DNA of HIV-NL4-3-eGFP in approximately 30% of the population of HIV-1-infected cells. The results from HIV-1-infected human primary T cells and latently infected T cells treated with the inducible ZFNs further validated that proviral DNA can be excised. Taken together, positively regulated expression of ZFNs in the presence of HIV-1 Tat may provide a safer and novel implementation of genome-editing technology for eradicating HIV-1 proviral DNA from infected host cells. Keywords: zinc-finger nuclease, genome editing, genomic excision, inducible, Tat, HIV-1, gene therapy |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|