Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

Autor: Marius van den Berg, Ardeshir Moeinian, Arne Kobald, Yu-Ting Chen, Anke Horneber, Steffen Strehle, Alfred J. Meixner, Dai Zhang
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Beilstein Journal of Nanotechnology, Vol 11, Iss 1, Pp 1147-1156 (2020)
Druh dokumentu: article
ISSN: 2190-4286
DOI: 10.3762/bjnano.11.99
Popis: Tip-enhanced Raman spectroscopy is combined with polarization angle-resolved spectroscopy to investigate the nanometer-scale structural properties of core–shell silicon nanowires (crystalline Si core and amorphous Si shell), which were synthesized by platinum-catalyzed vapor–liquid–solid growth and silicon overcoating by thermal chemical vapor deposition. Local changes in the fraction of crystallinity in these silicon nanowires are characterized at an optical resolution of about 300 nm. Furthermore, we are able to resolve the variations in the intensity ratios of the Raman peaks of crystalline Si and amorphous Si by applying tip-enhanced Raman spectroscopy, at sample positions being 8 nm apart. The local crystallinity revealed using confocal Raman spectroscopy and tip-enhanced Raman spectroscopy agrees well with the high-resolution transmission electron microscopy images. Additionally, the polarizations of Raman scattering and the photoluminescence signal from the tip–sample nanogap are explored by combining polarization angle-resolved emission spectroscopy with tip-enhanced optical spectroscopy. Our work demonstrates the significant potential of resolving local structural properties of Si nanomaterials at the sub-10 nanometer scale using tip-enhanced Raman techniques.
Databáze: Directory of Open Access Journals