Autor: |
Francisco Gomez-Donoso, Felix Escalona, Miguel Cazorla |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Applied Sciences, Vol 10, Iss 10, p 3409 (2020) |
Druh dokumentu: |
article |
ISSN: |
2076-3417 |
DOI: |
10.3390/app10103409 |
Popis: |
Deep learning-based methods have proven to be the best performers when it comes to object recognition cues both in images and tridimensional data. Nonetheless, when it comes to 3D object recognition, the authors tend to convert the 3D data to images and then perform their classification. However, despite its accuracy, this approach has some issues. In this work, we present a deep learning pipeline for object recognition that takes a point cloud as input and provides the classification probabilities as output. Our proposal is trained on synthetic CAD objects and is able to perform accurately when fed with real data provided by commercial sensors. Unlike most approaches, our method is specifically trained to work on partial views of the objects rather than on a full representation, which is not the representation of the objects as captured by commercial sensors. We trained our proposal with the ModelNet10 dataset and achieved a 78.39 % accuracy. We also tested it by adding noise to the dataset and against a number of datasets and real data with high success. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|