Assesment of covariance processing with GAIA for nuclear data uncertainty propagation

Autor: Sole Pierre, Jaiswal Vaibhav, Jouanne Cédric, Salino Vivian
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: EPJ Web of Conferences, Vol 294, p 05001 (2024)
Druh dokumentu: article
ISSN: 2100-014X
DOI: 10.1051/epjconf/202429405001
Popis: Nuclear data uncertainties are provided as covariance matrices in standard nuclear data libraries and propagating them trough neutronics simulations helps quantify the associated uncertainties on the final result. However, processing these matrices often poses challenges. Currently, the IRSN nuclear data processing code GAIA processes cross sections via several modules like DOP (Reconstruction and Doppler), TOP (URR), and SAB (TSL), but lacks the capability to process covariances. This paper introduces a new module named COP (COvariance Processing). The COP module aims to process covariance matrices comprehensively, including cross section (File 33), angular distribution (File 34), and resonance parameters (File 32). The preliminary results obtained using the COP module of GAIA in comparison with the ERRORR module of NJOY and PUFF module of AMPX are presented.
Databáze: Directory of Open Access Journals