3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part II

Autor: A. Tentori, A. Colaïtis, D. Batani
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Matter and Radiation at Extremes, Vol 7, Iss 6, Pp 065903-065903-12 (2022)
Druh dokumentu: article
ISSN: 2468-080X
DOI: 10.1063/5.0103632
Popis: We describe two numerical investigations performed using a 3D plasma Monte-Carlo code, developed to study hot-electron transport in the context of inertial confinement fusion. The code simulates the propagation of hot electrons in ionized targets, using appropriate scattering differential cross sections with free plasma electrons and ionized or partially ionized atoms. In this paper, we show that a target in the plasma state stops and diffuses electrons more effectively than a cold target (i.e., a target under standard conditions in which ionization is absent). This is related to the fact that in a plasma, the nuclear potential of plasma nuclei has a greater range than in the cold case, where the screening distance is determined by the electronic structure of atoms. However, in the ablation zone created by laser interaction, electrons undergo less severe scattering, counterbalancing the enhanced diffusion that occurs in the bulk. We also show that hard collisions, i.e., collisions with large polar scattering angle, play a primary role in electron beam diffusion and should not be neglected. An application of the plasma Monte-Carlo model to typical shock ignition implosions suggests that hot electrons will not give rise to any preheating concerns if their Maxwellian temperature is lower than 25–30 keV, although the presence of populations at higher temperatures must be suppressed. This result does not depend strongly on the initial angular divergence of the electron beam set in the simulations.
Databáze: Directory of Open Access Journals